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Abstract: Efficient water management in agriculture is crucial for improving 

productivity. In this study, Automated irrigation systems using soil moisture sensors 

for precise water discharge control and Internet of Things (IoT) technology were studied 

to achieve real-time data monitoring. The sensitivity of different types of soil moisture 

sensors varies, especially in field conditions. Hence, poses a challenge in optimizing 

irrigation water, leading to lowered productivity. Therefore, we provided insights into 

optimizing sensor selection and calibration for more effective water resource 

management in agriculture through performance evaluation of capacitive, resistive, and 

Time Domain Reflectometry (TDR) sensors in measuring soil moisture content under 

different soil types. The correlation between sensor sensitivity and the accuracy of soil 

moisture measurements under different soil types was studied. The laboratory 

experiment was conducted to evaluate th-e performance of factory-based calibrated 

soil moisture sensors. The performance of the soil moisture sensors was evaluated 

using Root Mean Squared Error (RMSE), Index of Agreement (IA), and Mean Bias Error 

(MBE). The result shows that the performance of the factory-based calibrated 

capacitive, resistive, and Time Domain Reflectometry (TDR) did not meet all the 

file:///C:/Users/Sanjay/Downloads/www.irjss.com
https://sjifactor.com/passport.php?id=24237
https://doi.org/%2010.5281/zenodo.14747871


International Research Journal of Scientific Studies 
e-ISSN: 3048-8451 

January 2025,  

Volume 2, Issue 1 

 

 

Paper ID: JAN250104              www.irjss.com           26 
Impact Factor: 3.648 (SJIF-2024) 

 

 

This article is an open-access publication, copyrighted by the author(s) and 
published in International Research Journal of Scientific Studies, under the 
Creative Commons Attribution License, permitting use, sharing, and 
reproduction in any medium, provided the original work is properly cited. 

 

 

statistical criteria except the capacitive sensor for sand loamy. There was a strong 

positive relationship among sensors. The correlation between TDR and resistive 

moisture readings was 0.96, between TDR and capacitive moisture readings was 0.98, 

and between resistive and capacitive moisture readings was 0.97. The correction 

equations were developed using the laboratory experiment and validated in the field. 

The correction equations for capacitive, resistive, and TDR improved the accuracy in 

field conditions. 

Keywords: Internet of Things, moisture, microcontroller, real-time monitoring, sensors. 

1.0 Introduction 

Soil moisture content has been of 

concern in many fields, especially 

agricultural engineers, agronomists, 

and crop scientists. It is a critical 

parameter in understanding water and 

solute transport in soil. Monitoring soil 

moisture content in agriculture is very 

tedious and time-consuming when done 

manually. Therefore, using sensors to 

improve water management through 

precise irrigation scheduling is essential 

because of their practicability in 

providing continuous data. Sensors can 

be installed at multiple depths, and 

they are not destructive. The common 

sensor technologies are Time Domain 

Reflectometry (TDR) and Frequency 

Domain Reflectometry (FDR) [1], [2]. 

The Internet of Things (IoT) has recently 

attracted growing attention from 

academia and industry [3], [4]. The 

development of IoT and the rise of free 

and open-source technologies have 

created an ideal environment for 

scientific and technological innovations 

[5].   

Agriculture has increasingly utilised 

advanced technology to manage various 

practices and operations and make 

informed decisions using sensors based 

on field monitoring [6]. Irrigation, the 

largest global consumer of water 

resources, using more than 75% of 

freshwater, has been particularly 

impacted by these advancements [7]. 

With rapid population growth and 

climate change, the demand for 

freshwater is expected to rise, causing 

water scarcity [8]. Traditionally, 

irrigation scheduling has depended on 

the farmer's experience [9]. Still, there 

is a need to adopt precision monitoring 

methods based on advanced scientific 
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devices and modern technologies that 

offer practical solutions. 

Effective water management is 

fundamental to achieving agricultural 

success and maintaining environmental 

sustainability [10], [11]. Accurate 

measurement and control of soil 

moisture levels are critical, particularly 

in automated irrigation systems, where 

soil moisture sensors play an essential 

role. These sensors provide real-time 

data that helps farmers optimize water 

use and enhance crop yields [12]. Field 

study is important because it will reveal 

the key factors affecting sensor 

sensitivity since most sensors 

are fabricated under laboratory 

conditions [13]. 

 

However, the reliability of automated 

irrigation systems is highly dependent 

on the accuracy of these sensors [14]. 

Inconsistent sensor sensitivity can lead 

to inaccurate soil moisture 

measurements, inefficient irrigation 

practices, and water wastage [15].  

 

[16] reported that the factory-based 

calibrated TDR, resistive, and capacitive 

sensors could not meet all statistical 

criteria except the capacitive sensor in 

the sand loamy. According to the 

results of their lab experiment, soil 

moisture sensors need to be calibrated 

for specific soil types (site-specific 

circumstances) to increase accuracy. 

Prior studies have also examined this 

[17], [18], [19]. 

This study addresses the variations in 

sensitivity among different types of soil 

moisture sensors, including capacitive, 

resistive, and Time-Domain 

Reflectometry (TDR) sensors. It will offer 

valuable insights into sensor selection 

and calibration methods for optimizing 

automated irrigation practices for more 

effective water management in 

agriculture.  

 

2.0 Materials and Methods 

Laboratory and field experiments were 

conducted to evaluate the performance 

of factory-based calibrated soil moisture 

sensors. 

2.1 Laboratory Experiment 

Materials  

Materials used during the laboratory 

experiment were plastic crate 

containers (80*41*35 cm) and factory-

based calibrated soil moisture sensors. 

The type, specifications and functions 

of soil moisture sensors are shown in 

Table 1. 

The system also includes an Arduino 

Uno microcontroller for sensor data 

collection and transmission, a WiFi 

module for wireless data transfer, a 
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relay switch to control the irrigation 

pump, and a toggle switch for power 

management. An LCD shows real-time 

sensor readings and system status, 

with components connected by wires 

and assembled on a breadboard. In 

addition, a 3.7V LiPo battery power 

sensors, a 12V DC pump for irrigation, 

Table 1: Type and specifications of soil moisture sensors 

S/N Type of sensor Specification Function 

1 Capacitive Soil 
Moisture Sensor 

 

SKU: SEN0193 Measures the soil moisture by determining 
the capacitance between its probe and the 
surrounding soil.  
Provides a non-destructive way of sensing 
moisture content. 
Widely used in agriculture and automated 

irrigation systems. 

2 Resistive Soil Moisture 
Sensor  

 

SKU: SEN0114 Work on the principle of varying resistance 
with soil moisture. As the soil becomes 
more conductive with increased moisture, 
the resistance changes, allowing the sensor 
to detect moisture levels. 

3 TDR (Time Domain 
Reflectometry) Soil 
Moisture Sensor 

 

 
 TDR-310H 

Measure soil moisture by sending 
electromagnetic pulses through the soil 
and analyzing the reflection time.  
The moisture content affects the soil's 
dielectric properties, altering the reflection 
time and providing accurate moisture 
readings. 

 

and pipes for water transport. A 12V 

power supply powers the pump. The 

system also includes a DHT22 sensor to 

measure temperature and humidity and 

wood materials to construct the 

framework for the setup. 

3.0 Soil classification and 

preparation 

Soil samples were collected from the 

SUA MODEL FARM agricultural fields 

and analysed for texture classification 

and bulk density in the soil laboratory 

at Sokoine University of Agriculture 

(SUA)(https://www.coa.sua.ac.tz/soil/c

ommercial-laboratory/).  

 

 

The average result of the soil 

classification and bulk density is shown 

in Table 2. The soil samples were oven-

dried at 1050C for 24 hours for 

laboratory experiments. 

 

The sensor performance was evaluated 

at low soil moisture levels for drought 

conditions. 

4.0 Sensor calibration and   

installation 

Capacitive, Resistive, and Time-Domain 

Reflectometry (TDR) sensors were 

calibrated before the experiment. The 
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calibration was conducted based on the 

readings in oven-dried and fully 

saturated soil. The analogue sensor 

readings on the oven-dried soil were 

considered 0% moisture level readings 

of sensors, while analogue sensor 

readings in fully saturated soil were 

taken as 100% moisture. The readings 

were mapped to capture the moisture 

level between 0% and 100% for both 

sensors. 

Table 2: Soil bulk density and classification 

Class Bulk Density (g/cm3) Sand (%) Silt (%) Clay (%) 

Loamy Sand 1.52 78.5 9.1 12.4 

Sandy Clay Loam                           1.31 59.3 15.6 25.1 

 

 

Figure 1: Overview of the laboratory experiment setup. 

 

Figure 2: Circuit and program written respectively 

Sand Loamy Sandy Clay Loam 
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The calibrated sensors were installed in 

the container with air-dried soil at 15 

cm depth from the surface (Figure 1). The 

sensors were connected to 

an Advantech-made Arduino Uno 

microcontroller (Arduino Uno R4).  

The Arduino Uno microcontroller 

processed the recorded measurements 

from moisture sensors at 10-minute 

intervals (Figure 2).  

 

5.0 Data Collection 

During data collection, the soil in each 

container was wetted using a 12V 

diaphragm pump sprayer and covered 

with a plastic liner to minimise 

evaporation. Wetted soil samples were 

collected thrice during the experiment 

using a 61 cm3 size soil ring for 

volumetric water content (VWC) 

analysis. At the same time, the sensor’s 

data were sent to the microcontroller 

every 10 minutes and transmitted to an 

online ThingSpeak cloud platform via a 

WiFi module for analysis. The duration 

of the laboratory experiment was 14 

days. The collected data are shown in

Table 3. 

Table 3: Collected data and their descriptions 

Measurement Description 

Timestamp The exact date and time when the data entry was created. This is crucial 

for tracking temporal changes in soil moisture and environmental 

conditions. 

Entry ID A unique identifier for each data entry. This ensures data integrity and 

facilitates easy referencing. 

TDR Sensor 

Data 

 

TDR Analogy The raw analogy reading from the TDR sensor indicates the relative soil 

moisture level. 

TDR Voltage Data The voltage output from the TDR sensor is proportional to the soil 

moisture content. 

TDR Moisture The calculated soil moisture content is derived from the TDR sensor 

readings. 

Resistive Sensor   

Resistive Analogy The raw analogy reading from the resistive sensor indicates the relative 

soil moisture level. 

Resistive Voltage The resistive sensor's voltage output varies with soil moisture content. 

Resistive 

Moisture 

The calculated soil moisture content is derived from the resistive sensor 

readings. 

Capacitive 

Sensor 

 

Capacitive Analog The capacitive sensor's raw analogy reading indicates the relative soil 

moisture level. 

Capacitive The voltage output from the capacitive sensor is proportional to the soil 
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Voltage moisture content. 

Capacitive 

Moisture 

The calculated soil moisture content is derived from the capacitive 

sensor readings. 

6.0 Statistical Analysis 

The performance of the soil moisture 

sensors was analysed using the 

ThingSpeak online cloud platform.  

According to [20], the significant 

difference between the sensor values 

and soil sample values was evaluated 

using Root Mean Squared Error 

(RMSE), Index of Agreement (IA), and 

Mean Bias Error (MBE).  

RMSE = √∑ (𝑀𝑖 − 𝑃𝑖)2𝑁
𝑖=1      

……………………………………………. i 

IA = 1 −
∑ (𝑀𝑖−𝑃𝑖)2 

𝑁

𝑖=1

∑ ( |𝑃𝑖−�̅�|+|𝑀𝑖−�̅�|)2 
𝑁

𝑖=1

   

……………………………………………. ii 

MBE =
1

𝑁
∑ (𝑃𝑖   − 𝑀𝑖)𝑁

𝑖=1   

…………………………………………………….  Iii 

Where: 𝑁 is the sample size, 𝑀𝑖 is the 

measured (soil sampling) value, 

𝑃𝑖 is the predicted (sensor 

measurement) value, and �̅� is 

the average measured value.  

IA is dimensionless, but RMSE and 

MBE are expressed in volumetric water 

content (cm3/cm3) units. A score of 0 

denotes no agreement between 

measured and anticipated values, while 

a range of IA falls between 0 and 1. A 

perfect match between observed and 

expected values is indicated by a value 

of 1. A higher IA score indicates better 

agreement between observed and 

projected values. According to [21], 

most agricultural applications require 

sensor measurement precision of less 

than 0.02 cm3/cm3. According to [17], 

the MBE and RMSE criteria were ± 0.02 

and less than 0.035 cm3/cm3, 

respectively. Thus, MBE± 0.02 cm3/cm3 

and RMSE < 0.035 cm3/cm3 were used 

in this investigation to assess the 

sensor performance. 

7.0 Field Experiment 

Based on [20], the validation of 

corrective equations was assessed in 

agricultural settings. The soil types 

used in the laboratory experiment, sand 

loamy and sandy clay loam, are the 

same in the two chosen agricultural 

fields. Cabbages were being grown in 

these fields [22], as shown in Figure 3. 

Table 2 displays the results of the soil 

texture categorisation analysis 

conducted by the SUA soil laboratory. A 

3-inch-diameter ring was used to gather 

soil samples to determine the 

volumetric water content. A limited 

number of soil samples were conducted 

to minimise disturbing the soils around 

the sensors. This volumetric water 

content data was compared to factory-

based calibrated and corrected soil 

moisture sensor data [23]. Sensors were 

installed by digging a shallow trench, 

inserting the sensors horizontally into 
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the soil, and then backfilling the trench. 

Capacitive, Resistive, and Time Domain 

Reflectometry (TDR) sensors were 

connected to a programmed Arduino 

Uno microcontroller to record the 

measurements of soil moisture levels 

every 10 minutes. 

Figure 3: Sensor placement layout 

Table 2: Soil classification for field demonstration 

 

8.0 Results and Discussion 

8.1 Correlation of sensor readings 

Figure 4 shows the correlation matrix of 

relationships between soil moisture 

readings from TDR, Resistive, and 

Capacitive sensors. The results indicate 

strong positive relationships among 

sensors. The correlation between TDR 

and resistive moisture readings was 

0.96, between TDR and capacitive 

moisture readings was 0.98, and 

between resistive and capacitive 

moisture readings was 0.97. These high 

correlations indicate consistency and 

reliability across different measurement 

technologies despite the differences in 

sensor types. 

8.2 Analysis of skewness and 

distribution patterns in sensor data 

The histograms (Figure 5) reveal several 

vital insights regarding the skewness of 

the variables. The TDR analog variable 

exhibits significant positive skewness 

(Skewness: 2.26), indicating a 

concentration of lower values and a 

long tail of higher values. Conversely, 

the TDR moisture, resistive moisture, 

and capacitive moisture variables 

Sensor Class Sand (%) Silt (%) Clay (%) 

Capacitive 
Sand Loamy 91.9 3.7 4.4 

Sandy Clay Loam 87.9 5.8 6.3 

Resistive 
Sand Loamy 54.8 23.6 21.6 

Sandy Clay Loam 92.3 1.3 6.4 

TDR 
Sand Loamy 53.3 26.6 20.1 

Sandy Clay Loam 86.8 4.8 8.4 
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demonstrate negative skewness 

(Skewness: -0.75, -0.48, and -0.73, 

respectively), signifying those higher 

values are more frequent with tails 

extending towards lower values. The 

resistive analogue variable displays 

significant positive skewness 

(Skewness: 0.62), while the capacitive 

analogue variable is virtually 

symmetrical with mild negative 

skewness (Skewness: -0.14). 

Additionally, the capacitive analogue 

variable is practically symmetrical with 

a very tiny left skew, indicating a more 

equal distribution of values around the 

mean. 

Each variable exhibits a distinct 

concentration of values within 

particular ranges in terms of 

distribution patterns (Figure 5). 

Capacitive moisture values are mainly 

concentrated around 70–80, but TDR 

analogue values are mainly clustered 

between 500 and 700. Notable peaks in 

these ranges indicate common 

measurement values, whereas the 

frequencies of observations vary; for 

example, TDR _moisture has a high 

frequency of values between 40 and 60. 

The TDR_analogue variable, which 

exhibits a notable decline in frequency 

over 700 with smaller peaks indicating 

outliers, makes the existence of outliers 

clear. More research may be necessary 

to fully comprehend these outliers' 

effects on the entire data set. 

 

Figure 4: Correlation matrix of three sensors' moisture readings 
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Furthermore, the distribution of soil 

moisture readings from TDR, resistive, 

and capacitive sensors is shown in the 

box plot (Figure 6). The TDR sensor 

displays some outliers below 10%, a 

median of roughly 50%, and an 

interquartile range (IQR) of roughly 30% 

to 65%. The resistive sensor exhibits 

more significant variability due to its 

more extensive range with an IQR 

ranging from 40% to 80% and a higher 

median of roughly 60%. With a 

narrower IQR from 45% to 75%, the 

capacitive sensor has a median near the 

resistive sensor at about 60%, 

indicating more consistent readings. 

The range of moisture levels detected is 

indicated by the whiskers on all 

sensors, which extend from almost 0% 

to over 80%. The box plot illustrates the 

central tendency and variability of the 

various sensors, demonstrating that 

resistive and capacitive sensors record 

more significant and variable moisture 

levels, whereas TDR readings are lower 

and more consistent. 

8.3 Sensor sensitivity  

Three sensors, TDR, resistive, and 

capacitive, provide soil moisture values 

over time in the graph, which is subject 

to laboratory testing. Every sensor 

shows a downward trend, which 

suggests that the earth is drying off. 

While the resistive and capacitive 

sensors hold greater levels for longer 

before progressively declining, the TDR 

sensor exhibits a fast fall early on. At 

first, moisture levels are- high above 

80%. In contrast to the resistive and 

capacitive sensors, which gradually 

diminish with fluctuations, the TDR 

sensor always declines sharply. All 

sensors converge to low moisture levels 

below 20% by about 4000 minutes, 

with the TDR sensor recording the 

lowest moisture and the capacitive 

sensor typically recording higher than 

the resistive (Figure 7). These variations 

emphasise the importance of selecting 

suitable sensors depending on the 

particular monitoring needs. 

8.4 Sensor performance 

Laboratory tests were used to evaluate 

the performance of TDR, resistive, and 

capacitive sensors in sand loamy and 

sandy clay loam. The outcome of the 

statistical analysis is shown in Table 3. 

Table 3 compares the sensor readings 

with the volumetric water content 

determined by sampling soil for sandy 

clay loam and loamy sand. According to 

the Capacitive's MBE readings, the 

sensor's average underestimation of 

volumetric water content in the sand, 

loamy sand, and sandy clay loam was 

0.01 cm3/cm3, 0.03 cm3/cm3, and 0.02 

cm3/cm3, respectively. Sand's RMSE 
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value satisfies the requirements, 

however sandy clay loam and loamy 

sand do not. Both the MBE and RMSE 

standards were met by the capacitive's 

performance for sand. MBE _ 0.02 

cm3/cm3 and RMSE <0.035 cm3/cm3 

are the requirements. The sensor 

overestimated the volumetric water 

content by an average of 0.03 cm3/cm3 

in the sand, underestimated it by 0.03 

 

Figure 5: Skewness of different sensor data 

cm3/cm3 in the loamy sand, and 

underestimated it by 0.05 cm3/cm3 in 

the sandy clay loam, according to the 

statistical values for the resistivity. 

Furthermore, it was intriguing to note 

that the resistivity values in Table 3 

were negative at the lowest moisture 

level, suggesting a calibration problem. 

The RMSE values for sand and loamy 
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sand have satisfied the requirements, 

except for sandy clay loam. 

8.5 Significant Variations  

The study found significant variations 

in the sensitivity of capacitive, resistive, 

and TDR soil moisture sensors. Table 4 

shows the performance metrics for each 

sensor type. 

According to the findings, out of the 

three sensor types,  

 

Figure 6: Box plot analysis of soil moisture readings 

 

Figure 7: Sensor sensitivity comparison over time
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Table 3: Statistical analysis to compare measured values to sensor values 

Table 4. Table showing significant variations in the sensitivity for each sensor type 

Statistic TDR Resistive Capacitive 

Count 439 439 439 

Mean 44.33 51.59 60.32 

Standard Deviation 20.87 24.16 21.73 

Minimum 0 0 12 

25th Percentile 39 30 39 

50th Percentile 49 59 66 

the TDR sensor had the lowest standard 

deviation and the best accuracy and 

consistency when measuring soil 

moisture content. According to this, 

TDR sensors are less impacted by 

environmental variables including 

changes in humidity and temperature, 

making them appropriate for automated 

irrigation systems in various 

agricultural contexts. 

 

8.6 Correction equations 

Correction equations for the three 

sensors were created using the 

laboratory data (Table 5). The value 

from the factory-calibrated sensor is 

denoted by θvi. The corrected value is 

θv. Since the resistivity values at the 

lowest moisture content measurement 

were negative, the logarithmic resistivity 

equations for sand loamy and sand clay 

loam are unavailable.  

  

Moisture levels/ crop 

type 

Sensor RMSE IA MBE 

Sand Loamy Resistivity 0.010 0.96 −0.01 

 Capacitive 0.035 0.82 0.03 

 TDR 0.046 0.74 −0.03 

Sandy Clay Loam Resistivity 0.032 0.91 −0.03 

 Capacitive 0.040 0.88 −0.02 

 TDR 0.063 0.62 −0.05 
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Table 5. Correction equations for TDR, Resistive and Capacitive soil moisture sensors 
Soil 

Type Sensor Equation Type Equation RMSE IA MBE R2 

Sand 
Loamy 

TDR  

   Linear 
Exponential 

Logarithmic 
Quadratic 

θv = 1.4011 ∗θvi − 0.0213  

θv = 0.0036e43.906∗θvi 
     θv = 0.0577 ∗ ln(θvi) + 0.2294  

     θv = −0.5029 ∗(θvi)2 + 1.4532 ∗θvi − 0.0225 

0.005 
0.031 

0.008 
0.005 

0.99 
0.84 

0.97 
0.99 

0.001 
0.004 

0.001 
0.001 

0.97 
0.88 

0.92 
0.97 

Resistive 

   Linear 
Exponential 

Logarithmic 
   Quadratic 

θv = 0.6055 ∗θvi + 0.0064  

θv = 0.0083e19.316∗θvi 
    N/A 

     θv = 1.0217 ∗(θvi)2 + 0.4689 ∗θvi + 0.0083 

0.003 
0.020 

N/A 
0.002 

0.99 
0.92 

N/A 
0.99 

0.001 
0.002 

N/A 
0.001 

0.99 
0.93 

N/A 
0.99 

Capacitive 

   Linear 

Exponential 
Logarithmic 

   Quadratic 

θv = 2.1154 ∗θvi − 0.0465  

θv = 0.0032e43.918∗θvi 

     θv = 0.1157 ∗ ln(θvi) + 0.4187  

     θv = −12.181 ∗(θvi)2 + 3.6501 ∗θvi − 0.0873 

0.016 

0.061 
0.017 

0.016 

0.97 

0.78 
0.56 

0.97 

−0.001 

0.006 
0.001 
−0.001 

0.89 

0.85 
0.88 

0.89 

Sandy 

Clay 
Loam 

TDR 

   Linear 

Exponential 

   Logarithmic 
   Quadratic 

θv = 0.9759 ∗θvi − 0.0283  

θv = 0.0149e20.471∗θvi 

    N/A 

    θv = −1.7108 ∗(θvi)2 +1.1702 ∗θvi + 0.028 

0.059  

0.055 

N/A 
0.017 

0.76 

0.81 

N/A 
0.97 

−0.057 

0.005 

N/A 
0.001 

0.89 

0.85  

N/A 
0.90 

Resistive 

Linear 

Exponential 
Logarithmic 

Quadratic 

θv = 1.7905 ∗θvi − 0.093  

θv = 0.0131e16.505∗θvi 

      θv = 0.2036 ∗ ln(θvi) + 0.5697  

      θv = 13.837 ∗(θvi)2−1.5894 ∗θvi + 0.0858 

0.011 

0.017 
0.015 

0.016 

0.99 

0.99 
0.99 

0.99 

0.001 

0.001 
0.001 

0.001 

0.97 

0.99 
0.94 

0.99 

Capacitive 

Linear 
Exponential 

Logarithmic 
Quadratic 

  θv = 1.2857 ∗θvi + 0.0142  

  θv = 0.0439e10.074∗θvi 

      θv = 0.1532 ∗ ln(θvi) + 0.5019 
      θv = −9.1965 ∗(θvi)2 + 3.5828 ∗θvi − 0.1146 

0.037 
0.043 

0.024 
0.034 

0.88 
0.87 

0.89 
0.89 

−0.001 
−0.011 
−0.011 
0.020 

0.65 
0.49 

0.67 
0.68 

Drawing from prior research, this study 

assessed the sensor's performance 

using the following standards: R2 > 

0.65, MBE +0.02 cm3/cm3, IA > 0.8, 

RMSE < 0.035 cm3/cm3,  as observed 

by [21], [24]. 

According to the statistical analysis 

results, every kind of equation for TDR 

and capacitance in the sand loamy has 

satisfied the requirements. TDR and the 

factory-calibrated capacitor both 

satisfied the requirements. Exponential 

and logarithmic equations did not 

perform as well as the linear and 

quadratic type equations of capacitive. 

All forms of equations have satisfied the 

requirements in sandy clay loam. The 

TDR and capacitive linear, exponential, 

and quadratic equations have satisfied 

the requirements.  

In loamy sand, the quadratic equation 

satisfied the requirements, while linear 

and exponential equations did not.  

Logarithmic, exponential, and linear 

equations performed poorly in sandy 

clay loam. Only the quadratic equation 

was able to meet the requirements. 

According to prior research, the 

quadratic equations often had the 

highest IA and R2 and the lowest RMSE 

and MBE [24]. 

8.7 Validation of Correction 

Equations 

The field experiment was performed to 

validate the correction equations. 

Figures 8, 9 and 10 show the 

comparisons of factory-based 

calibration of soil moisture sensors to 
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corrected values for sand loamy and sandy clay loam, respectively.  

 
Figure 8: Comparison of factory-based calibration to corrected values for Capacitive in sand 

loamy 

 
Figure 9: Comparison of factory-based calibration to corrected values for resistivity in sand 

loamy 

 
Figure 10: Comparison of factory-based calibration to corrected values for TDR in sand 

loamy 
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Figure 11: Comparison of factory-based calibration to corrected values for Capacitive in 

sandy clay loam 

 
Figure 12: Comparison of factory-based calibration to corrected values for Resistive in sandy 

clay loam 

 
Figure 13: Comparison of factory-based calibration to corrected values for TDR in sandy clay 

loam

file:///C:/Users/Sanjay/Downloads/www.irjss.com


International Research Journal of Scientific Studies 
e-ISSN: 3048-8451 

January 2025,  
Volume 2, Issue 1 

 

Paper ID: JAN250104              www.irjss.com           41 

The RMSE values for factory-based 

calibration and after correction in loamy 

sand are 0.023 and 0.021 cm3/cm3, 

respectively. This result shows that 

loamy sand slightly improved the 

correction equation (0.002 cm3/cm3). 

Another study also had RMSE values of 

0.024, 0.023, and 0.044 cm3/cm3 in 

loamy sand [17]. The RMSE values for 

factory-based calibration and after 

correction in sandy clay loam are 0.039 

and 0.012 cm3/cm3, respectively. 

Overall, the moisture sensor 

performance was improved with the 

correction equations. 

The factory-based calibration of 

capacitive, resistivity, and TDR soil 

moisture sensors is compared to 

corrected values for sand loamy and 

sandy clay loam, respectively, in 

Figures 11, 12 and 13. The RMSE 

values in sand loamy after correction 

and factory-based calibration are 0.006 

and 0.026 cm3/cm3, respectively. This 

outcome demonstrates a 0.019 

cm3/cm3 improvement using the sand 

loamy correction calculation. After 

correction and factory-based 

calibration, the RMSE values in sandy 

clay loam are 0.020 and 0.047 

cm3/cm3, respectively. Overall, the 

correction equations significantly 

increased the capacitive sensor's 

performance.  

Mounting the soil moisture sensor 

dramatically impacts its performance, 

in addition to fixing the calibration 

equation. Previous studies have also 

stressed the need for adequate contact 

between the sensor and soil to prevent 

the formation of an air gap [25], [26], 

[27]. As soil depth grows, variations in 

soil temperature are reduced. 

9.0 Conclusions 

Through laboratory and field tests, this 

study assessed the effectiveness of TDR, 

resistive, and capacitive soil moisture 

sensors. Except for the capacitor for 

sand loamy, none of the factory-based 

calibrated TDR, resistive or capacitive, 

performed well enough to satisfy the 

statistical requirements. Last, TDR 

sensors are highly precise and perfect 

for in-depth research and large-scale 

farming. Resistive sensors are cost-

effective but require more maintenance 

and capacitive sensors balance cost and 

accuracy for widespread application. A 

precise assessment of soil moisture is 

necessary to maximise irrigation 

effectiveness. TDR, high-sensitivity 

sensors improve water use efficiency by 

affecting water application rates and 

irrigation schedules by providing 

accurate moisture data. Making the 

most of sensor data for improved 

irrigation techniques requires careful 

calibration, thoughtful positioning, and 
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routine maintenance. More sustainable 

water consumption will result from 

integrating these sensors with data 

analytics and IoT platforms, enhancing 

real-time monitoring and predictive 

irrigation control. 

Consequently, it is advised that TDR, 

resistive, and capacitive soil moisture 

sensors be calibrated for each kind of 

soil. The lab experiment produced the 

correction calibration equations for 

each of the three sensors. The field 

experiment's sensor demonstration 

verified that the correction equations 

increased the accuracy of the TDR, 

resistive, and capacitive sensors. 

 

Reference  

[1] H. He et al., “A review of time 

domain reflectometry (TDR) 

applications in porous media,” Adv. 

Agron., vol. 168, pp. 83–155, 2021. 

[2] Y. Zhu, S. Irmak, A. J. Jhala, M. C. 

Vuran, and A. Diotto, “Time-domain 

and frequency-domain reflectometry 

type soil moisture sensor 

performance and soil temperature 

effects in fine-and coarse-textured 

soils,” Appl. Eng. Agric., vol. 35, no. 

2, pp. 117–134, 2019. 

[3] L. Da Xu, W. He, and S. Li, “Internet 

of things in industries: A survey,” 

IEEE Trans. Ind. Inform., vol. 10, no. 

4, pp. 2233–2243, 2014. 

[4] C. Perera, C. H. Liu, S. 

Jayawardena, and M. Chen, “A 

survey on internet of things from 

industrial market perspective,” IEEE 

Access, vol. 2, pp. 1660–1679, 2014. 

[5] A. Martikkala, J. David, A. Lobov, M. 

Lanz, and I. F. Ituarte, “Trends for 

low-cost and open-source IoT 

solutions development for industry 

4.0,” Procedia Manuf., vol. 55, pp. 

298–305, 2021. 

[6] O. Adeyemi, I. Grove, S. Peets, and 

T. Norton, “Advanced monitoring and 

management systems for improving 

sustainability in precision 

irrigation,” Sustainability, vol. 9, no. 

3, p. 353, 2017. 

[7] A. M. Okasha, H. G. Ibrahim, A. H. 

Elmetwalli, K. M. Khedher, Z. M. 

Yaseen, and S. Elsayed, “Designing 

low-cost capacitive-based soil 

moisture sensor and smart 

monitoring unit operated by solar 

cells for greenhouse irrigation 

management,” Sensors, vol. 21, no. 

16, p. 5387, 2021. 

[8] W. A. Jury and H. J. Vaux Jr, “The 

emerging global water crisis: 

managing scarcity and conflict 

between water users,” Adv. Agron., 

vol. 95, pp. 1–76, 2007. 

[9] D. Wang and X. Cai, “Irrigation 

scheduling—Role of weather 

forecasting and farmers’ behavior,” 

file:///C:/Users/Sanjay/Downloads/www.irjss.com


International Research Journal of Scientific Studies 
e-ISSN: 3048-8451 

January 2025,  
Volume 2, Issue 1 

 

Paper ID: JAN250104              www.irjss.com           43 

J. Water Resour. Plan. Manag., vol. 

135, no. 5, pp. 364–372, 2009. 

[10] A. L. Srivastav, R. Dhyani, M. 

Ranjan, S. Madhav, and M. 

Sillanpää, “Climate-resilient 

strategies for sustainable 

management of water resources and 

agriculture,” Environ. Sci. Pollut. 

Res., vol. 28, no. 31, pp. 41576–

41595, 2021. 

[11] L. García, L. Parra, J. M. 

Jimenez, J. Lloret, and P. Lorenz, 

“IoT-based smart irrigation systems: 

An overview on the recent trends on 

sensors and IoT systems for 

irrigation in precision agriculture,” 

Sensors, vol. 20, no. 4, p. 1042, 

2020. 

[12] A. Garg, P. Munoth, and R. Goyal, 

“Application of soil moisture sensor 

in agriculture,” presented at the 

Proceedings of Internation 

Conference on Hydraulic, 2016, pp. 

8–10. 

[13] X. Zhang, C. Yang, and L. Wang, 

“Research and application of a new 

soil moisture sensor,” presented at 

the MATEC Web of Conferences, 

EDP Sciences, 2018, p. 02010. 

[14] Z. Gu, Z. Qi, R. Burghate, S. 

Yuan, X. Jiao, and J. Xu, “Irrigation 

scheduling approaches and 

applications: A review,” J. Irrig. 

Drain. Eng., vol. 146, no. 6, p. 

04020007, 2020. 

[15] K. Paul et al., “Viable smart 

sensors and their application in data 

driven agriculture,” Comput. 

Electron. Agric., vol. 198, p. 107096, 

2022. 

[16] G. Cecchetto, “Design and 

Construction of an Experimental 

Setup for BioSealing Application in 

Artificial Groundwater Recharge,” 

2021. 

[17] J. L. Varble and J. L. Chávez, 

“Performance evaluation and 

calibration of soil water content and 

potential sensors for agricultural 

soils in eastern Colorado,” Agric. 

Water Manag., vol. 101, no. 1, pp. 

93–106, 2011. 

[18] T. J. A. da Silva, E. M. Bonfim-

Silva, A. B. Pacheco, T. F. Duarte, H. 

H. de Freitas Sousa, and J. V. José, 

“Evaluation of various soil moisture 

sensors in four different soil types,” 

Appl. Eng. Agric., vol. 34, no. 6, pp. 

963–971, 2018. 

[19] G. Kargas and K. X. Soulis, 

“Performance analysis and 

calibration of a new low-cost 

capacitance soil moisture sensor,” J. 

Irrig. Drain. Eng., vol. 138, no. 7, pp. 

632–641, 2012. 

file:///C:/Users/Sanjay/Downloads/www.irjss.com


International Research Journal of Scientific Studies 
e-ISSN: 3048-8451 

January 2025,  
Volume 2, Issue 1 

 

Paper ID: JAN250104              www.irjss.com           44 

[20] C. J. Willmott, “On the validation 

of models,” Phys. Geogr., vol. 2, no. 

2, pp. 184–194, 1981. 

[21] C. Hignett and S. Evett, “Direct 

and surrogate measures of soil water 

content,” 2008. 

[22] C. P. I. SUB–TROPICAL, 

“Modelling water conservation for 

cabbage production in sub–tropical 

humid region using DSSAT–

CROPGRO MODEL,” 2023. 

[23] R. Nandi and D. Shrestha, 

“Assessment of Low-Cost and 

Higher-End Soil Moisture Sensors 

across Various Moisture Ranges and 

Soil Textures,” Sensors, vol. 24, no. 

18, p. 5886, 2024. 

[24] Y. Chen et al., “Soil water sensor 

performance and corrections with 

multiple installation orientations 

and depths under three agricultural 

irrigation treatments,” Sensors, vol. 

19, no. 13, p. 2872, 2019. 

[25] Y. Dong, S. Miller, and L. Kelley, 

“Improving irrigation water use 

efficiency: using soil moisture 

sensors,” Mich. State Univ. Ext. 

Bull., p. E3445, 2020. 

[26] J. P. Walker, G. R. Willgoose, and 

J. D. Kalma, “In situ measurement 

of soil moisture: a comparison of 

techniques,” J. Hydrol., vol. 293, no. 

1–4, pp. 85–99, 2004. 

[27] H. Yin, Y. Cao, B. Marelli, X. 

Zeng, A. J. Mason, and C. Cao, “Soil 

sensors and plant wearables for 

smart and precision agriculture,” 

Adv. Mater., vol. 33, no. 20, p. 

2007764, 2021. 

Article History: 

Submitted: 2025-01-18 

Accepted: 2025-01-26 

Published: 2025-01-27 

 

file:///C:/Users/Sanjay/Downloads/www.irjss.com

